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SUMMARY

The implementation of the multigrid method into the SIMPLE algorithm presents interesting aspects
concerning the mass fluxes conservation on coarser grids, the k–o turbulence model and the higher-order
discretization schemes. Higher-order discretization schemes for the convection terms are increasingly used
in order to guarantee accuracy in demanding engineering applications. However, when used in single-grid
algorithms, their convergence is considerably slower compared with the first-order schemes. Unbounded
higher-order schemes offer maximum accuracy, but quite often they do not converge due to their
oscillatory behaviour. This paper demonstrates the dual function of the multigrid method: reduction of
CPU time and stabilization of the iterating procedure, making it possible to perform computations with
the third-order accurate QUICK scheme in all cases. The method is applied to the calculation of two- and
three-dimensional flows with or without turbulence modelling. The results show that the convergence rate
of the present algorithm does not deteriorate when QUICK is used and that, if applied on complex
engineering cases, large gains in computational time can be achieved. Copyright © 2001 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The increase of computer power over the last two decades has permitted the application of
computational fluid dynamics (CFD) methods to a significant number of engineering flows.
These are, generally, high-Reynolds number flows, extending to complex computational
domains, which often incorporate different length scales. In such flows, the numerical
modelling of the incompressible Navier–Stokes equations requires fine computational grids,
with costs in computer memory and run time. One way to decrease the computational costs is
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the use of higher-order schemes for the convective terms discretization. Higher-order schemes,
such as QUICK [1], SMART [2], VONOS [3] or BSOU [4], allow coarser domain discretiza-
tion, resulting in lower computer time and memory requirements for the same level of accuracy
[3].

A second way to reduce the run time of a Navier–Stokes algorithm is to improve the solver
or the equation formulation itself. The application of a preconditioned conjugate gradient
method [5,6] offers some advantages, but its monotonic behaviour as the grid size increases is
not guaranteed. On the other hand, the multigrid method is generally considered as the most
powerful tool to reduce the computational effort. The multigrid method is based on the
observation that the numerical solution of equations on coarse grids is quite fast, while, as the
grid density increases, it becomes progressively slower. This is due to the fact that high
frequency error components are smoothed rapidly on fine grids. However, low frequency error
components are those that are responsible for the convergence delay, because their optimal
smoothness rate should be achieved on coarser grids. According to this observation, the
principle of the multigrid method is to cut the lower frequencies of error components on
coarser grids, while the high frequency components of the fine grid are smoothed out rather
than being solved iteratively. The most attractive characteristic of the multigrid method
compared with other convergence acceleration techniques is that its convergence rate is
independent of the finest grid size, and that the amount of computational effort needed to
solve a system of N unknowns, is proportional to N [7].

Up to now the development and application of multigrid methods has been demonstrated
mainly on simple two-dimensional cases; the most common being the lid-driven cavity flow
[8–11]. These studies, except the one of Vanka [10], concern the implementation of the
multigrid method into the SIMPLE [12] algorithm. Lien and Leschziner [8] implemented the
k–o turbulence model into the multigrid algorithm, which was applied to a two-dimensional
plane diffuser. Recently, three-dimensional multigrid algorithms have been developed by Dick
and Steelant [13] and Drikakis et al. [14], combined with a flux-splitting and an artificial
compressibility formulation respectively. The relevant test cases concern three-dimensional
turbulent compressible flows and laminar incompressible flows. However, up to now very few
or no papers—to the authors’ knowledge—deal with the application of the multigrid method
on three-dimensional incompressible turbulent flows, solved with the SIMPLE algorithm.

The aim of this paper is to not only present a multigrid application on a rather complicated
flow field, but also to examine the influence of the multigrid convergence characteristics on
higher-order discretization schemes. The interaction of the multigrid method with the higher-
order discretization schemes showed that the integration of these procedures does not present
stability problems. Higher-order discretization schemes have already been used in some of the
above-mentioned papers. However, the most important finding of the present study (not
previously reported) is that the multigrid method allows the unconditional use of unbounded
higher-order schemes, such as QUICK [1]. This means that now unbounded discretization
schemes can be employed even in cases where convergence of the iterative procedure was
prohibited by the well-known oscillatory behaviour of these schemes. Relevant work on this
subject has been recently published by Oosterlee et al. [15], who focused on the development
of multigrid line smoothers for bounded schemes only. The smoothers were developed on the
basis of the flux-splitting formulation and the test cases included the two-dimensional
lid-driven cavity flow and an inviscid channel compressible flow problem.
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The following sections present the most important aspects of the implementation of the
multigrid method into the SIMPLE algorithm, as well as the specific formulations adopted for
the k–o turbulence model and the higher-order schemes. The present algorithm has been
applied on two two-dimensional cases and one three-dimensional case, with increased complex-
ity. The two-dimensional cases include the above-mentioned and well-documented lid-driven
cavity flow [16] and the backward-facing step case [17] (turbulent flow); the three-dimensional
one concerns the turbulent flow around a cube [18]. The presentation of the numerical results
focuses on the convergence acceleration and the parameters affecting it, without neglecting the
most interesting flow characteristics of each case.

2. DISCRETIZATION METHOD

The continuity and momentum equations in tensor formulation are:
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where r is the density, ui and xi are the Cartesian velocity components and co-ordinate
directions respectively, P is the pressure and m denotes the dynamic viscosity.

The transport equations for the turbulent kinetic energy k and its dissipation rate o (k–o

model [19]) are
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G is the turbulent shear stress production, expressed as
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The k–o model constants are C1=1.44, C2=1.92, sk=0.9 and so=1.3.
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The values of the dependent variables ui and P are stored in the centre of the computational
grid cells in a collocated arrangement. The transport equations (1)–(4) are then integrated over
the finite control volume (Figure 1), which surrounds the storage locations and coincides with
the grid lines (lowercase subscripts refer to quantities on the cell face, whereas uppercase
subscripts refer to quantities on the cell centres). The complete procedure is described in
Varonos and Bergeles [3] and yields

APfP=AEfE+AWfW+ANfN+ASfS+AUfU+ADfD+Sf ·Vol+SUx+SUy+SUz

(7)

where

f=ui, P, k, o (8)

AP=AE+AW+AN+AS+AU+AD (9)

and

AE=max(0, −Ce)+De, AW=max(0, Cw)+Dw (10)

SUx=max(0, Ce)DWFe
+(fP−fE)+max(0, −Ce)DWFe

−(fP−fE)

+max(0, Cw)DWFw
+(fP−fW)+max(0, −Cw)DWFw

−(fP−fW) (11)

Sf is the source term. The downwind weighting factor (DWF) [20] in Equation (11) is defined
as

DWF=
fe−fP

fE−fP

(12)

Figure 1. Control volume annotation.
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where fe is the value on the eastern face of the cell, as it is given by the discretization scheme
[3]. The superscripts + and − over the DWF indicate the direction of the u-velocity. The
DWFs have to be calculated according to its sign.

The diffusion coefficients and the mass fluxes across the cell faces are computed as follows:

De= [Gf ]e
DynsDzud

DxEP

, Dw= [Gf ]w
DynsDzud

DxPW

(13)

Ce= [ru ]eDynsDzud, Cw= [ru ]wDynsDzud (14)

The interpolation of the velocity on the cell faces requires special treatment, because the
collocated storage of variables causes the decoupling of velocities and pressure. This in turn
produces oscillations in the pressure field. The oscillations may be damped by the introduction
of a fourth-order pressure derivative into the continuity equation, which in the Rhie and Chow
[21] equivalent expression gives
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where ue is the approximation of the u-velocity on the eastern cell face, before the pressure
correction, and Vol is the volume of the computational cell. The ( , ) symbol denotes
interpolation on the cell face. The same relations expressed in the y- and z-directions apply for
the rest of the coefficients. The system of the discretized equations is then solved iteratively
using the SIMPLE algorithm [12], incorporating a fast line-by-line solver.

3. MULTIGRID METHOD

The procedure described in the previous section corresponds to a single-grid algorithm. It is
quite fast in the first iterations but much slower thereafter, and the convergence rate
deteriorates as the grid is refined. This behaviour can be explained by a Fourier analysis of the
error components [7]. The iterative procedure smoothes very efficiently the error wavelengths
with size comparable with the computational cells size, while it is inefficient to annihilate the
lower frequency components. According to this observation it is advantageous to smooth each
error frequency component on a grid with the appropriate line spacing. The multigrid
technique combines this concept with an information exchange between the flow properties, so
that low frequency components of the error are smoothed out in coarser grids, while the coarse
grid information is transferred to the finer grids.

When Equation (7) is satisfied, it may be written as
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[Am ]{8m}={Sm} (16)

where m is the grid number, [Am ] is the coefficient matrix, {Sm} is the source term vector and
{8m} is the exact solution vector. Note that in the present annotation, m=1 corresponds to
the finest grid, on which is sought the numerical solution of Equation (7).

After nm iterations with the SIMPLE algorithm on this grid, the approximate solution {fm}
satisfies the following residual equation:

{Rm}={Sm}− [Am ]{fm} (17)

[Am ] and {Sm} are current approximations of [Am ] and {Sm}, based on the approximate
solution {fm} and {Rm} is the residual of Equation (7). The multigrid coupling equation is
derived by subtracting Equation (17) from Equation (16)

[Am ]{8m}={Sm}+ [Am ] {fm}−{Sm}+{R m} (18)

Equation (18) is transferred to the next coarser grid m+1 as follows:

[A. m+1]{f. m+1}={S. m+1}+ [A0 m+1]{f0 m+1}−{S0 m+1}+{R0 m+1}

constant term

(19)

The ( . ) symbol is attributed to operators and variables that are modified during the iterations
on the coarser grid m+1. The {�} symbol represents vectors that have been transferred from
grid m to grid m+1 by a procedure widely known as ‘restriction’. Figure 2 shows the control
volumes of the fine and coarse grids. Coarser grids are generated simply by assembling four of
the fine grid cells. This is done to simplify coarser grid generation, but imposes some
restrictions on the selection of the grid nodes number, as well as it does for the solid

Figure 2. Multigrid arrangement and storage locations.
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boundaries definition. Restriction is made with bilinear interpolations of the four fine grid
variables surrounding a coarse grid value and it is denoted by the operator Im

m+1

f0 m+1=Im
m+1fm (20)

The multigrid method can also be used with an arbitrary selection of the coarser grids sizes.
This choice should be employed in engineering problems with complex boundaries because it
complicates further the computer algorithm and requires the storage of the connectivity
between the coarse and fine grid variables. Connectivity information is necessary for the
restriction procedure and in the present formulation, it is straightforwardly deduced by the
assembly of the four fine grid cells.

The restriction of the residual {R0 m+1} is done by summing the residuals of the four fine grid
control cells (Figure 2)

R0 m+1=Rm
1 +Rm

2 +Rm
3 +Rm

4 (21)

On the other hand, for consistency reasons, the computation of [A0 m+1] and {S0 m+1} is done in
the same way as it is done for [A. m+1] and {S. m+1}, based on the values of f0 m+1 (for more
details see Hortmann et al. [22]). At the first iteration on the coarse grid, f0 m+1 and f. m+1 are
identical. In subsequent iterations, the terms in the bracket (Equation (19)) remain constant
and are introduced as a source term in the general set of matrices of Equation (7).

The mass fluxes, used to evaluate [A. m+1] before the first iteration on the coarse grid, are
conservatively evaluated by summing the fine grid mass fluxes through the corresponding
control volume faces (Figure 3). During the coarse grid iterations, the mass fluxes calculation
has to be consistent with the multigrid procedure, and therefore the former are corrected as
follows:

C. e�m+1=C0 e�m+1+re�m+1DynsDzud(ûe�m+1− ŭe�m+1) (22)

where ûe�m+1 and ŭe�m+1 are calculated according to Equations (23) and (24)—which have
forms similar to Equation (15)—as

Figure 3. Mass fluxes restriction.
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where P %m+1 is a coarse grid pressure correction, as explained in Section 3.1.
The multigrid coupling is completed with the transfer of the coarse grid corrections to the

fine grid solution, according to the full approximation scheme (FAS) [23]

fm
new=fm

old+Im+1
m (f. m+1−f0 m+1) (25)

Im+1
m is the ‘prolongation’ operator, which transfers the coarse grid corrections (f. m+1−f0 m+1)

to the fine grid by means of bilinear interpolations. The Im+1
m operator transfers the

corrections of four coarse grid points (A to D) to each of the fine grid storage locations (a to
d in Figure 2).

3.1. Coarse grid pressure correction

The above procedure results from the application of the FAS, which has been developed for
non-linear [A ] operators; therefore, it is applied on the momentum equations only. Although
the FAS is applicable to linear operators as well, it is not used for the continuity equations. In
SIMPLE, continuity is used to form the pressure correction equation and since the pressure
operator [A ] is also linear, it is advantageous to use the multigrid correction scheme [7]. A
second reason to use the correction scheme instead of the FAS is that pressure in SIMPLE is
built up by summing pressure corrections rather than being solved directly, as it is done for the
velocity components of the momentum equations [22,23]. According to the correction scheme,
it is not necessary to restrict the fine grid pressure field to the coarse grid. What has to be done
is to compute a pressure correction for the fine grid, which is denoted by P %m+1. Thus, the
coarse grid procedure for the pressure correction is as follows:

First it is set:

{P %m+1}=0 (26)

The coarse grid continuity equation provides a correction to the pressure correction P %m+1,
which is calculated by the equation

[A. m+1]{P¦m+1}={R %m+1} (27)

where the coarse grid mass residual is computed by the flux balance in each computational cell

R %m+1= −C. e�m+1+C. w�m+1−C. n�m+1+C. s�m+1−C. u�m+1+C. d�m+1 (28)

Once Equation (27) is solved, P %m+1 is corrected as
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P %m+1
new =P %m+1

old +P¦m+1 (29)

and as soon as the iterative procedure in the coarse grid is completed, the coarse grid pressure
correction is transferred to the fine grid with the same prolongation operator Im+1

m (Equation
(25))

Pm
new=Pm

old+Im+1
m P %m+1 (30)

3.2. Boundary conditions

The stability and efficiency of the multigrid method is significantly affected by the boundary
conditions, which have to be consistent with the procedure described in the previous sections.
Dirichlet conditions of the fine grid have to be also restricted to the coarse grid. In the case
of two-dimensional flow, restriction is made by linear interpolation (Figure 2).

The mass balance procedure at the flow field exit is slightly more complicated. No restriction
nor prolongation is required and the mass balance calculation for the u-velocity component is
made on the finest grid only. The same is valid for the application of the exit Neumann
conditions on the two other velocity components 6 and w.

The application of Neumann boundary conditions at other sections of the flow field (e.g. at
the top boundary) is kept unmodified for the fine and coarse grids. A more accurate approach
would be first to restrict the fine grid variables to the coarse one and then apply directly the
Neumann condition before iterations start on the coarse grid. Although this implementation is
mathematically consistent [23], it increases programming complexity. Numerical trials that
were carried out in the present study showed that this choice does not improve significantly the
algorithm’s efficiency and that it is advantageous to employ the unmodified Neumann
conditions, as it is suggested by Hänel et al. [24].

3.3. Turbulence modelling

The direct application of the multigrid method on Equations (3) and (4) generates negative
values for k and o, leading then to a breakdown of the calculation [8,23]. Dick and Steelant [13]
used a damping procedure proposed by Lien and Leschziner [8], which stabilizes the k–o

multigrid procedure and accelerates the convergence rate. However, the solution of the k–o

transport equations on the coarse grid and their prolongation to the fine grid are time
consuming. Therefore, in the present work, the k–o equations are solved on the finest grid only
and their values are restricted to the coarse one, where the turbulent viscosity mt is computed
once, according to Equation (5). The wall functions calculation is the same for every grid level.
This choice is proved to be quite efficient, especially with large (finest) computational grids.

3.4. Higher-order discretization schemes

The use of higher-order discretization schemes has been recently imposed by the need to
acquire accurate results in a wide range of engineering flows. In a single grid algorithm,
bounded higher-order discretization schemes, such as SMART [2], VONOS [3] or BSOU [4],
present much lower convergence rates than the ones obtained by the well-known Hybrid

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 395–420
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scheme [25]. On the other hand, higher-order schemes are much more time efficient than the
Hybrid one, because they achieve the same level of accuracy with significantly fewer computa-
tional points [3].

QUICK [1] is a well-known third-order accurate scheme, which in a number of studies was
proven to give the most accurate results. However, QUICK lacks the boundedness property
and therefore it often creates further delays in convergence or does not converge at all. This
led to the development of bounded versions of QUICK (e.g. VONOS [3]), which are used as
higher-order schemes in single grid algorithms, without stability problems. The development of
the present algorithm led to the conclusion that the multigrid method not only stabilizes and
increases the convergence rate of bounded schemes, but that it does so unconditionally for the
QUICK scheme as well.

The implementation of the higher-order scheme in the multigrid procedure is done in two
ways: in the first one, the higher-order scheme is applied on the finest grid only, whereas the
Hybrid scheme is used for the coarser grids discretization. This approach saves computational
time within the multigrid cycle and it is advantageous when employed with high-Reynolds
number turbulent flows. The second approach consists of applying the higher-order scheme on
all grid levels. This choice does not create stability problems and increases the convergence rate
of the multigrid procedure for laminar two-dimensional problems.

3.5. Multigrid cycles

The method presented in the previous sections describes a two-grid algorithm, where properties
and residuals are transferred from the fine to the coarse grid. According to the multigrid
concept, this procedure can be extended to more grid levels, depending on the number of nodes
of the finest grid. Optimum convergence rates are obtained with three to five grid levels.

For the grid level sequence (Figure 4), the V-cycle is adopted. Two types of V-cycles have
been investigated. The first has a constant number of iterations at all grid levels, between the
restriction and prolongation procedures, and is denoted as [lr, lp] (Figure 4(a)). The second uses
the function m+ l, where m is the current grid level and l is a constant number of iterations
(Figure 4(b)). This cycle—denoted [m+ lr, m+ lp]—lets more iterations be performed on the
coarser grids and less on the finer ones (m=1 is the finest grid). This is done because iterations
on coarse grids are faster, providing a quick decrease of the residual.

Figure 4. V-cycle types: (a) constant number of iterations before restriction and prolongation, (b) most
iterations are performed on coarse grids.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 395–420
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The full multigrid approach [22], in which the solution of the field starts on the coarsest grid
and then it is advanced with successive multigrid cycles to the finest level, was not adopted in
the present work.

4. TEST CASES AND RESULTS

The multigrid algorithm described in the previous sections has been applied on three different
test cases with increased complexity. The lid-driven cavity test flow [16] (two-dimensional) was
used to initially investigate the performance of the algorithm and to optimize the parameters
of the multigrid method. The second case is the two-dimensional turbulent flow over a
backward-facing step [17], which served to assess the method in conjunction with the k–o

model. The turbulent flow around a cube [18] is finally simulated in order to verify that
convergence characteristics do not deteriorate in three-dimensional problems.

Most of the attention is given to the parameters affecting the acceleration obtained with the
multigrid method, including higher-order schemes. The flow characteristics are compared with
benchmark or experimental results and provide a solid basis for the conclusions, which are
drawn from the present study.

4.1. Ca6ity case

The recirculating flow inside a lid-driven cavity has been widely used for the assessment of the
accuracy and convergence of CFD methods. More details about the flow characteristics in the
cavity can be found in the papers of Varonos and Bergeles [3] and Ghia et al. [16].

The results presented here include a parametric study for the tuning of the multigrid
parameters, namely the number of grid levels and the V-cycle type. The finest grid used is
uniform, defined by 65×65 points. There are in total 3–5 grid levels with dimensions 65×65,
33×33, 17×17 and 5×5 points. Two Reynolds numbers have been investigated: 100 and
5000. The study is focused on Re=5000, in which most of convergence and accuracy problems
occur. The underrelaxation factors for pressure and momentum equations (equal to 0.5) are
the same for both single and multigrid calculations. Iterations are counted on the finest grid
level only. The flow field was assumed converged when all normalized residuals were below of
10−4.

The Hybrid discretization scheme is first employed. Table I presents the influence of the
number of grid levels and V-cycle type on the convergence speed-up. The Speed-up given in the
last column corresponds to the CPU time required for the single grid calculation with the finest
grid (65×65 points), over the CPU time used for the multigrid calculations. The runs were
made on an IBM Power PC with the RISC 604 processor. Optimum convergence is achieved
with five grids, in conjunction with a [2, 2] V-cycle, giving a speed-up ratio of 36.1. However,
since the difference with the combination four grids—[3, 3] cycle is small—it is deduced that
the latter is satisfactory as well. Figure 5 shows the convergence histories for the single and
multigrid algorithms for the optimum combination five grids—[2, 2] V-cycle. It is worthwhile
to point out the highly oscillatory convergence of the mass residual, when only the 65×65 grid
is used. In Figure 5, the abscissa corresponds to work units, in which the extra CPU time used

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 395–420
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Table I. Cavity case—Hybrid scheme: speed-up factors for Re=100 with the
65×65 uniform grid.

GridIterations V-cycle type CPU time Speed-up
levels (s)

1 — 3571904 —
82 3 [2, 2] 30.5 11.7

4 [2, 2]33 12.7 28.1
5 [2, 2] 9.9025* 36.1
5 [m+0, m+0]24 14.7 24.2
5 [m+1, m+1] 10.7 33.423
5 [m+2, m+2]26 11.3 31.7

24 4 [m+0, m+0] 14.4 24.9
23 4 [m+1, m+1] 10.3 34.7

4 [m+2, m+2]26 10.9 32.7
4 [3, 3] 10.027 35.7
5 [3, 3]27 10.1 35.1

* In this and succeeding tables, bold numbers correspond to the optimum performance.

Figure 5. Cavity case with Re=100 (65×65 uniform grid, Hybrid scheme). Convergence history for the
u-momentum and mass residuals: full lines=single grid solution; lines with symbols=multigrid solution.

in the multigrid cycle has been accounted for. Therefore, the work units correspond to the
exact number of iterations for the single grid calculation only. The representation of the
convergence history by means of work units permits the direct deduction of the speed-up
obtained with the multigrid method.

The speed-up ratio is non-monotonic with Reynolds number. As the Reynolds number
increases, speed-up decreases, and as it is deduced from Table II, for Re=5000 the optimum
parameters are three grid levels and [m+2, m+2] V-cycle; speed-up is substantially reduced
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Table II. Cavity case—Hybrid scheme: speed-up factors for Re=5000 with
the 65×65 uniform grid.

GridIterations V-cycle type CPU time Speed-up
(s)levels

1 —927 175 —
3 [2, 2] 32.7 5.389
4 [2, 2]99 38.0 4.6

91 5 [2, 2] 35.3 4.9
5 [3, 3] 27.276 6.4
5 [m+0, m+0]62 38.9 4.5

69 5 [m+1, m+1] 31.6 5.5
5 [m+2, m+2] 27.164 6.4
4 [3, 3]76 26.8 6.5

67 4 [m+0, m+0] 39.9 4.4
4 [m+1, m+1] 34.975 5.0
4 [m+2, m+2]67 26.5 6.6

73 3 [3, 3] 24.6 7.1
394 [m+0, m+0] 51.4 3.4
3 [m+1, m+1]89 36.9 4.7
364 [m+2, m+2] 23.9 7.3

and its maximum value is now 7.3. This was, to a degree, anticipated, because from the single
grid calculation it is clear that a Reynolds number increase facilitates the solver convergence.
This observation is justified by the single-grid iterations number (1904 for Re=100 and 972
for Re=5000) as well as by the convergence history (Figure 6). The reduction in multigrid

Figure 6. Cavity case with Re=5000 (65×65 grid, Hybrid scheme). Convergence history for the
u-momentum and mass residuals: full lines=single grid solution; lines with symbols=multigrid solution.
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efficiency for high Reynolds numbers has also been reported by Lien and Leschziner [8]
and Ferziger and Peric [23]. In their studies, the maximum Reynolds number is 1000, for
which the speed-up was found equal to 6.2 and 3 respectively, with a 64×64 grid. How-
ever, the most important characteristic of the multigrid method is that when very fine grids
are used, the speed-up factor increases, because the computational work is roughly propor-
tional to the unknowns number [7]. Figure 7 shows the convergence history for the calcula-
tion with a 257×257 uniform grid, including six multigrid levels and a [m+2, m+2]
V-cycle. For this computation, the speed-up factor was equal to 48.

4.1.1. Higher-order schemes. Table III summarizes the results concerning the use of the
higher-order discretization schemes VONOS and QUICK for Re=5000. The schemes were
employed in the dual way mentioned in Section 3.4. From the results it is obvious that this
type of flow favours the application of higher-order discretization on all grid levels. Opti-
mum performance for VONOS is achieved with five grids and a [3, 3] V-cycle. The speed-
up factor is 9.3 compared with 8.1 when the scheme is used on the finest grid only.

As mentioned in Sections 1 and 3.4, the most important conclusion of the present study
is that the multigrid method stabilizes the convergence characteristics of unbounded higher-
order schemes. Figure 8 shows that the calculation with the QUICK scheme for Re=5000
does not converge. On the contrary, when the multigrid cycles are activated, convergence is
even faster than the one of VONOS (Table III). It is also worthwhile to note that, when
QUICK is activated at all grid levels, the required time for convergence is reduced by a
factor of 2.4 compared with the calculation where QUICK is employed on the finest grid
only.

Figure 7. Cavity case with Re=5000 (257×257 grid, Hybrid scheme). Convergence history for the
u-momentum and mass residuals: full lines=single grid solution; lines with symbols=multigrid solution.
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Table III. Cavity case—VONOS–QUICK schemes: speed-up factors for Re=5000 with the 65×65
uniform grid.

Grid V-cycle typeIterations Scheme CPU time Speed-up
levels (s)

1 — VONOS5419 1473 —
3 [m+2, m+2] VONOS586 285.5 5.2
3 [3, 3] VONOS742 331.3 4.4

385 4 [m+2, m+2] VONOS 196.4 7.5
466 4 [3, 3] VONOS 223.1 6.6

5 [m+2, m+2] VONOS346 182.9 8.1
5394 [3, 3] VONOS 182.3 8.1
5 [m+2, m+2] VONOS274 166.7 8.8

(all grid levels)
5 [3, 3] VONOS289 157.9 9.3

(all grid levels)

Not 1 — QUICK — —
converged

5 [m+2, m+2] QUICK 107.6 Not defined223
5 [3, 3] QUICK97 47.03 Not defined

(all grid levels)
5 [m+2, m+2] QUICK82 44.30 Not defined

(all grid levels)

Figure 8. Cavity case with Re=5000 (65×65 grid, QUICK scheme applied on all grid levels).
Convergence history for the u-momentum and mass residuals: full lines=single grid solution; lines with

symbols=multigrid solution.
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Figure 9. Comparison of the u velocity profiles along the vertical centreline of the cavity obtained with
the Hybrid and VONOS schemes (65×65 grid) against the benchmark solution for Re=5000.

Figures 9 and 10 present the comparison of the velocity profiles at the geometrical centreline
of the cavity for Hybrid, VONOS and QUICK schemes. In Figure 9 it is clear that the
divergence of the profile predicted with the Hybrid scheme from the data of Ghia et al. [16] is

Figure 10. Comparison of the u velocity profiles along the vertical centreline of the cavity obtained with
the Hybrid (257×257 grid) and QUICK schemes (65×65 grid) against the benchmark solution for

Re=5000.
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Figure 11. Geometrical arrangement for the flow over the two-dimensional backward-facing step.

quite significant due to the increased numerical diffusion this scheme introduces into the
numerical solution [4]. On the other hand, VONOS matches very well the benchmark data,
although the computational grid is uniform and rather coarse for this type of flow. The same
observation is made in Figure 10, where the Hybrid scheme fails to describe the velocity
profile, even when a 257×257 grid is used. It is important to note that QUICK gives a more
accurate profile employing only 6.4 per cent of the discretization points used to obtain the
solution with the Hybrid scheme.

4.2. Step case

The geometry of the two-dimensional flow in a backward-facing step is shown in Figure 11. It
has been experimentally investigated by Kim et al. [17]. The Reynolds number is Re= (Uinh)/
n=69600, with Uin=17.8 m s−1 and h=0.0381 m. The fluid density and dynamic viscosity
are r=1.886 kg m−3 and m=1.837×10−5 kg m−1 s−1 respectively. The inlet velocity and k
profiles measured by Kim et al. [17] were used as inlet conditions. The underrelaxation factors
for the momentum and pressure equations are common for the single and multigrid procedure
and were equal to 0.3. The convergence criterion is met at 10−4 for all normalised residuals.

Table IV summarizes the results obtained with the Hybrid and QUICK schemes on a
65×65 non-uniform grid. Speed-up (only the maximum is reported) is equal to 2.9 for both
schemes and it was achieved with three grid levels and a [m+4, m+1] V-cycle. In contrast to
the lid-driven cavity case, the application of QUICK on all grid levels did not improve
substantially the convergence characteristics and in terms of computational time, the speed-up
is practically the same.

Table IV. Step case—Hybrid–QUICK schemes: speed-up factors for the 65×65 non-uniform grid.

V-cycle typeGrid Speed-upScheme CPU timeIterations
levels (s)

Hybrid 639 —2578 1 —
Hybrid 218 2.9606 3 [m+4, m+1]

—822QUICK—12760
3 [m+4, m+1] QUICK 284 2.9686

3.0276QUICK[m+4, m+1]611 3
(all grid levels)
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Figure 12 shows the convergence histories for QUICK. The main feature in this figure is
that, in the beginning of the calculation, the normalized residuals are two orders of magnitude
higher than those of the single grid calculation. This is possibly due to the fact that the
calculation started with a non-zero field, which was estimated according to the inlet conditions.
Nevertheless, it is obvious that the dependence of the flow field on the k–o turbulence model
has substantially decreased the convergence acceleration of the multigrid method. Figure 13
presents the convergence history for the 257×129 non-uniform grid. The multigrid calculation
was performed using four grids and a [m+4, m+1] V-cycle, without using higher-order
discretization on the coarse grids; the speed-up factor was equal to 13.8.

Figures 14 and 15 present some features of the field, namely the Cp along the ‘ground’ after
the step and two characteristic u and k profiles, compared with the measurements of Kim et
al. [17] and the predictions of Sohn [26].

4.3. Cube case

The turbulent flow around a wall-mounted cube (Figure 16) has been simulated in order to
investigate the efficiency of the multigrid method—integrated into the SIMPLE algorithm—
when it is applied to a complex three-dimensional case. The velocity and pressure distributions
on the cube faces, as well as the inlet profiles, were measured by Castro and Robins [18]. The
Reynolds number is Re= (Uinh)/n=4000, with Uin=0.5 m s−1 and h=0.2 m (cube height).
The boundary layer thickness is equal to 10h. The fluid density and dynamic viscosity are
r=1.188 kg m−3 and m=1.798×10−5 kg m−1 s−1. The underrelaxation factors for the

Figure 12. Step case (65×65 grid, QUICK scheme). Convergence history for the u-momentum and mass
residuals: full lines=single grid solution; lines with symbols=multigrid solution.
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Figure 13. Step case (257×129 grid, QUICK scheme). Convergence history for the u-momentum and
mass residuals: full lines=single grid solution; lines with symbols=multigrid solution.

momentum and pressure equations were all equal to 0.3. The convergence criterion was set
again at 10−4 for all normalized residuals.

Two different non-uniform grids were used for the calculations; a 65×65×33 and a
81×81×41 points (Figure 17). Hybrid and QUICK schemes were employed on the coarse
grid (the 65×65×33 one), whereas for the fine one only the QUICK has been used. Figures
18–20 present the convergence history of each run. Due to the increased memory requirements,

Figure 14. Step case (257×129 grid, QUICK scheme). Cp distribution on the lower wall (after the step):
comparison with the experimental data and the predictions of Sohn [26].
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Figure 15. Step case (257×129 grid, QUICK scheme). Comparison with the experimental data and the
predictions of Sohn [26]: (a) u velocity at x/h=6.67, (b) turbulent kinetic energy k at x/h=5.

the calculations were performed on a DEC Alpha (Personal Workstation) with the 500 series
processor; for the calculation with the 81×81×41 grid, 80 Mb of RAM were required. The
work units on Figures 18–20 show that the speed-up factors for the 65×65×33 grid are
equal to 2.3 and 2.5 for the Hybrid and QUICK respectively. The speed-up factor for the finer
81×81×41 grid is, as expected, higher and equal to 2.7. All calculations were made using
three grid levels and a [m+2, m+2] V-cycle. For this case a relaxation on the coarse grid

Figure 16. Geometrical arrangement for the flow around the wall mounted cube.
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Figure 17. Cube case. Detail of the 257×129 grid around the cube.

pressure correction has been also introduced and its value was set to 0.1. These multigrid
parameters have been tuned after an extended optimisation study, which was conducted on
coarser grids and was similar to the one carried out for the lid-driven cavity case. The study
showed that the application of higher-order discretization on all grid levels for complex high
Reynolds number three-(and two-)dimensional cases should be avoided. This is due to the fact
that convergence characteristics are only slightly improved, whereas additional computational
time is consumed by the higher-order scheme on the coarser grids. Finally, in the frame of the

Figure 18. Cube case (65×65×33 grid, Hybrid scheme). Convergence history for the u-momentum and
mass residuals: full lines=single grid solution; lines with symbols=multigrid solution.
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Figure 19. Cube case (65×65×33 grid, QUICK scheme). Convergence history for the u-momentum
and mass residuals: full lines=single grid solution; lines with symbols=multigrid solution.

above study, it was also found that multigrid acceleration is reduced, as the grid non-
uniformity is increased.

4.3.1. Flow field characteristics. The flow field around the wall-mounted cube has also been
investigated by Baetke et al. [27] and Murakami et al. [28]. Figure 21 presents the pressure

Figure 20. Cube case (81×81×41 grid, QUICK scheme). Convergence history for the u-momentum
and mass residuals: full lines=single grid solution; lines with symbols=multigrid solution.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 395–420



MULTIGRID METHOD WITH HIGHER-ORDER DISCRETIZATION 417

Figure 21. Cube case. Cp distribution on x–z plane for cube sides A, B and C: comparison with the
experimental data.

coefficient (Cp) distribution on the cube in the x–z plane. Most discrepancies occur in the
beginning of sides A and B due to the well-known inability of the k–o model to accurately
predict the size of recirculatimg flow in these areas. In this figure it is also clear that QUICK
gives more accurate results than the Hybrid scheme when the 65×65×33 grid is used. The

Figure 22. Cube case. Cp distribution on x–y plane for cube sides A, B and C: comparison with the
experimental data.
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Figure 23. Cube case. Vertical u velocity profiles along x–z plane, starting from the top centre of the
cube: comparison with the experimental data.

81×81×41 grid calculation (QUICK) presents slightly higher discrepancies close to the end
of side A, but gives better predictions in the beginning of side B. According to the
investigations of Murakami et al. [28], the recirculation bubble in this area can be accurately
predicted only by means of large eddy simulation (LES) or direct numerical simulation (DNS)
computations.

Figure 22 shows the Cp distribution on the x–y plane. The agreement with the experimental
data is better in the whole range of the curve. The most accurate predictions are those of the
81×81×41 grid (QUICK) except side A, where a slight overestimation occurs. As far as the

Figure 24. Velocity vectors on the plane crossing the centreline of the cube.
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Figure 25. Streamlines on the y–z plane at 0.1h downstream of the cube.

velocity field predictions are concerned, from Figure 23 it is obvious that the curves resulting
from the three runs almost coincide and agree very well with the experimental data.

Finally, Figures 24 and 25 present one horizontal and one transverse cut of the flow field,
where the main patterns of the flow are clearly visualized. The main characteristic of the plane
located at 0.1h downstream the cube (Figure 25) is the presence of a horseshoe vortex, which
is generated due to the vorticity produced along the edges of the cube.

5. CONCLUSIONS

The implementation of the multigrid method into the SIMPLE algorithm showed that it offers
important convergence speed-up not only with first-order or bounded discretization schemes,
but with higher-order unbounded schemes as well. The multigrid procedure presented in this
paper is fully conservative, including a special treatment for the k–o equations. Higher-order
schemes were employed in a dual approach that considers the application of higher-order
discretization whether on all grid levels or the finest grid only. The simulation of three different
test cases proved that, in most problems, the application of higher-order schemes results in
increased speed-ups compared with first-order (or hybrid) discretization.

According to the numerical results, there is important convergence acceleration, which
increases with the grid discretization density. The results indicate that it is favourable to use
the QUICK discretization scheme at all cases. In laminar two-dimensional cases, higher-order
schemes should be used at all grid levels, whereas for high Reynolds number two- and
three-dimensional flows, higher-order discretization is favourable when applied on the finest
grid only. In terms of computational time, the multigrid method is 3–4 times faster than the
single grid algorithm, for most convection-dominated engineering applications.
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